Efficient PSD Constrained Asymmetric Metric Learning for Person Re-identification Shengcai Liao and Stan Z. Li

Introduction

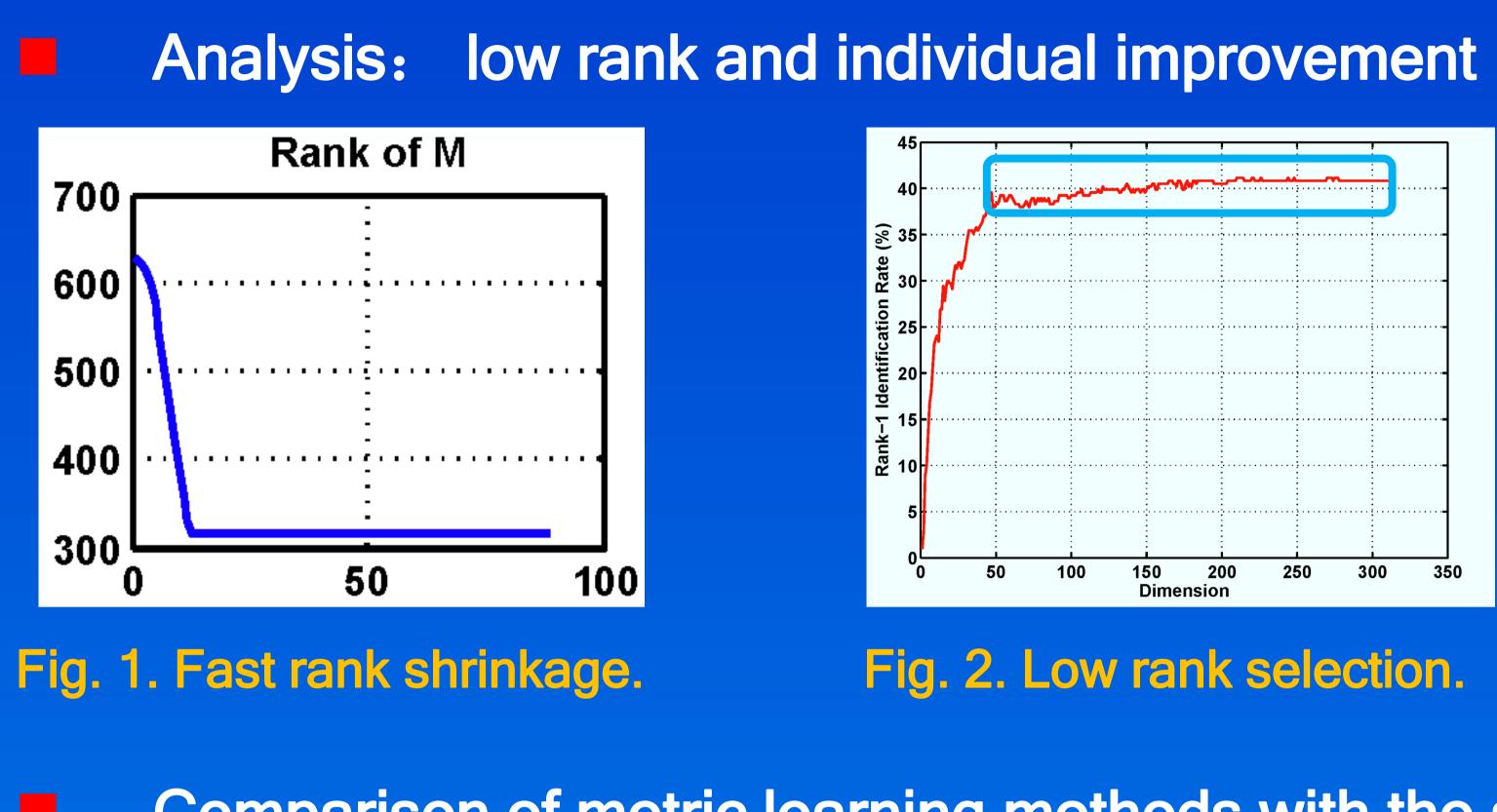
Problems with existing metric learning methods • Applying PSD: expensive • No PSD: noisy pos/neg samples: largely unbalanced Contributions Asymmetric pos/neg sample weights to balance pos/neg costs Advantages • PSD+APG leads to low rank and smooth metric APG solution is fast in convergence PSD and asymmetric weights lead to notable improvements Formulation • Mahalanobis distance : $D_{M}^{2}(\mathbf{x}, \mathbf{z})$ • Loss function : $f_{\mathbf{M}}(\mathbf{x}, \mathbf{z}) = log$ • Full loss: $F(\mathbf{M}) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=$ • Problem : $\min_{\mathbf{M}} F(\mathbf{M}), s.t. \mathbf{M} \succeq$ **APG Solution** • Proximal operator : $P_{\eta_t}(\mathbf{M}, \mathbf{V}_t) = F(\mathbf{V}_t) + \langle \mathbf{M} - \mathbf{V}_t, \nabla F(\mathbf{V}_t) \rangle + \frac{1}{2n_t} \|\mathbf{M} - \mathbf{V}_t\|_F^2$ • Update rule : $\mathbf{C}_t = \mathbf{V}_t - \eta_t \nabla F(\mathbf{V}_t) = \mathbf{U}_t \Lambda_t \mathbf{U}_t^T$ $\mathbf{M}_t = \mathbf{U}_t \mathbf{\Lambda}_t^+ \mathbf{U}_t^T$ • Dimension reduction : $P_t = U_t^+ (\Lambda_t^{++})^{1/2}$

Center for Biometrics and Security Research (CBSR) & National Laboratory of Pattern Recognition (NLPR)

APG solution to the PSD constrained logistic metric learning problem

Cross-view Logistic Metric Learning

$$\mathbf{y} = \|\mathbf{x} - \mathbf{z}\|_{\mathbf{M}}^{2} = (\mathbf{x} - \mathbf{z})^{T} \mathbf{M}(\mathbf{x} - \mathbf{z})$$


$$\begin{pmatrix} 1 + e^{y(D_{\mathbf{M}}^{2}(\mathbf{x}, \mathbf{z}) - \mu)} \\ w_{ij} f_{\mathbf{M}}(\mathbf{x}_{i}, \mathbf{z}_{j}) \\ 0 \\ \end{bmatrix}$$
asymmetric pos/neg sample weighting
$$\mathbf{y} = \mathbf{w} = \mathbf{y}$$
PSD constraint, smooth the solution

• Gradient : simplified matrix computation $\nabla F = \mathbf{X} \mathbf{A}_t \mathbf{X}^T - \mathbf{X} \mathbf{G}_t \mathbf{Z}^T - (\mathbf{X} \mathbf{G}_t \mathbf{Z}^T)^T + \mathbf{Z} \mathbf{B}_t \mathbf{Z}^T$

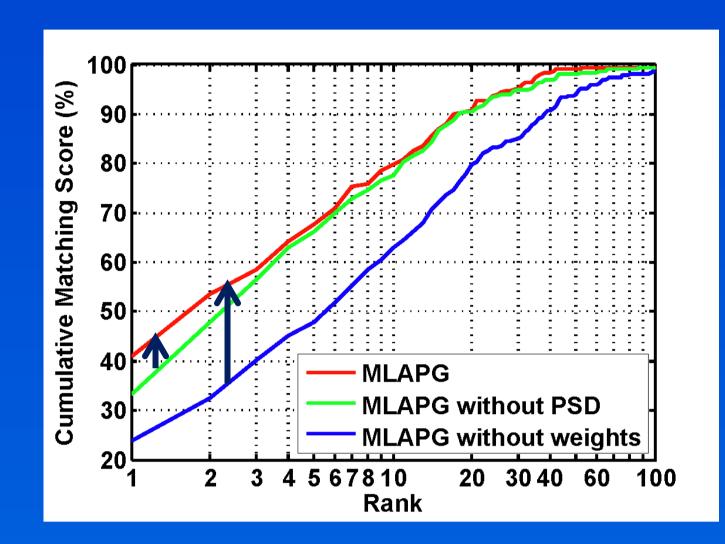
 $D^2_{\mathbf{P}_t}(\mathbf{x},\mathbf{z}) = \|\mathbf{P}_t^T\mathbf{x} - \mathbf{P}_t^T\mathbf{z}\|_2^2$

Institute of Automation, Chinese Academy of Sciences

Experiments

rank = 20 **rank = 10** 39.21 81.42 92.50 MLAPG 38.23 81.14 92.18 33.54 79.30 90.47 KISSME 28.42 72.31 85.32 LMNN 27.63 19.02 75.47 88.29 LADF 52.31 67.34 13.99 LDML 38.64 48.73 12.15 PRDC 35.82 48.26

Fig. 4. On the VIPeR database.


Comparison to the published results

						Method	rank=1	rank=10	rank=20
Method	rank=1	rank=10	rank=20	Reference		MLAPG	16.64	41.20	52.96
MLAPG	40.73	82.34	92.37	Proposed		XQDA [14]	16.56	41.84	52.40
XQDA	40.00	80.51	91.08	2015 CVPR [14]		MtMCML [19]	14.08	45.84	59.84
SCNCD	37.80	81.20	90.40	2014 ECCV [29]		MRank-RankSVM [16	12.24	36.32	46.56
Kernel Ensb 2	36.1	80.1	85.6	2014 ECCV [28]		MRank-PRDC [16]	11.12	35.76	46.56
kBiCov	31.11	70.71	82.45	2014 IVC [18]		RankSVM [23]	10.24	33.28	43.68
LADF	30.22	78.92	90.44	2013 CVPR [13]		PRDC [33]	9.68	32.96	44.32
SalMatch	30.16	65.54	79.15	2013 ICCV [30]		L1-norm [16]	4.40	16.24	24.80
Mid-level Filter*	29.11	65.95	79.87	2014 CVPR [32]		L J			
MtMCML	28.83	75.82	88.51	2014 TIP [19]	Fig	7. On the Q	MIII	GRID	datab
RPLM	27.00	69.00	83.00	2012 ECCV [9]	· • • • • • • • • • • • • • • • • • • •				
SSCDL	25.60	68.10	83.60	2014 CVPR [15]		Mathad	nonl 1		
LF	24.18	67.12	82.00	2013 CVPR [22]		Method	rank=1	rank=10	rank=20
SDALF	19.87	49.37	65.73	2013 CVIU [1]		MLAPG	64.24	90.84	94.92
KISSME	19.60	62.20	77.00	2012 CVPR [10]		XQDA [14]	63.21	90.04	94.16
PCCA	19.27	64.91	80.28	2012 CVPR [20]		Mid-level Filter [32]	34.30	64.96	74.94
PRDC	15.66	53.86	70.09	2013 TPAMI [33]		SalMatch [30]	28.45	55.67	67.95
ELF	12.00	44.00	61.00	2008 ECCV [6]		GenericMetric [11]	20.00	56.04	69.27
	<u> </u>	<u> </u>				eSDC [31]	19.67	40.29	50.58

Fig. 6. On the VIPeR database. Fig. 8. On the CUHK Campus database.

Project Website and MATLAB Source Code

http://www.cbsr.ia.ac.cn/users/scliao/projects/mlapg/

Fig. 3. Improvements by PSD and weighting.

Comparison of metric learning methods with the same LOMO feature

Method	rank = 1	rank = 10	rank = 20
XQDA	16.56	41.44	52.48
MLAPG	15.60	40.48	52.48
LMNN	10.80	34.24	45.76
KISSME	10.64	31.60	43.20
ITML	9.44	27.04	35.20
LDML	8.16	22.24	27.36
PRDC	7.52	23.84	31.44
LADF	6.00	27.36	41.28

Fig. 5. On the QMUL GRID database.

	Labeled	Detected
LOMO+MLAPG	57.96	51.15
LOMO+XQDA [14]	52.20	46.25
DeepReID [12]	20.65	19.89
KISSME [10]	14.17	11.70
LDML [7]	13.51	10.92
eSDC [31]	8.76	7.68
LMNN [26]	7.29	6.25
ITML [3]	5.53	5.14
SDALF [1]	5.60	4.87
		1

. On the CUHK03 database