

Person Re-identification

Introduction and Future Trends

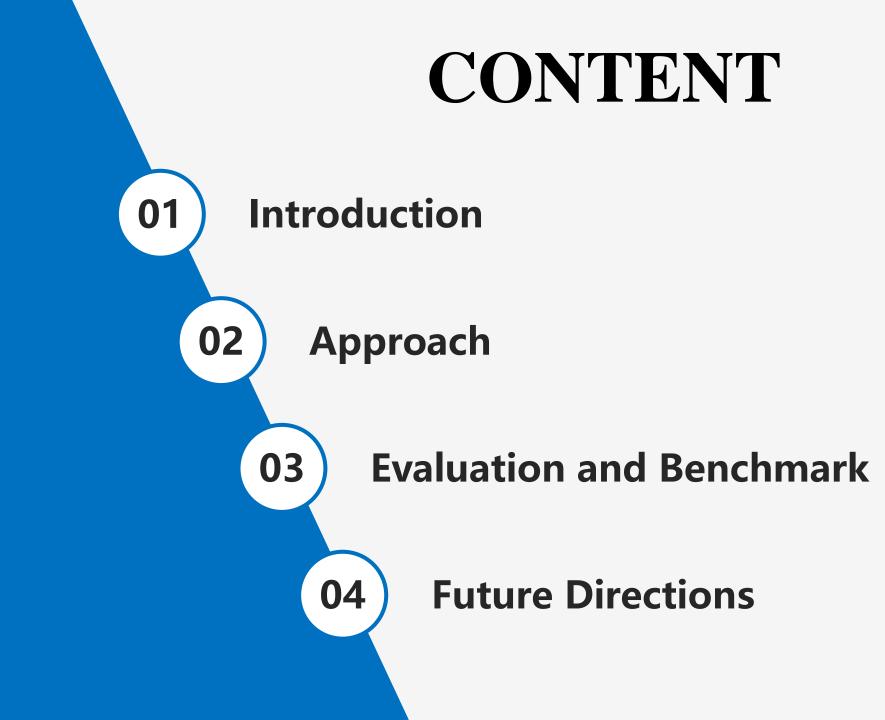
Shengcai Liao

Institute of Automation Chinese Academy of Sciences

ECCV 2018 Tutorial • Munich

Representation Learning for Pedestrian Re-identification - Schedule

- 09:00 09:40 Introduction and future trends,
 Shengcai Liao
- 09:40 10:20 Visual descriptors and similarity metrics, Yang Yang
- 10:20 10:40 Coffee break
- 10:40 11:40 Deep learning and transfer learning, Zhun Zhong
- 11:40 12:00 Questions & Discussions



Security concerns

2011 riot in London

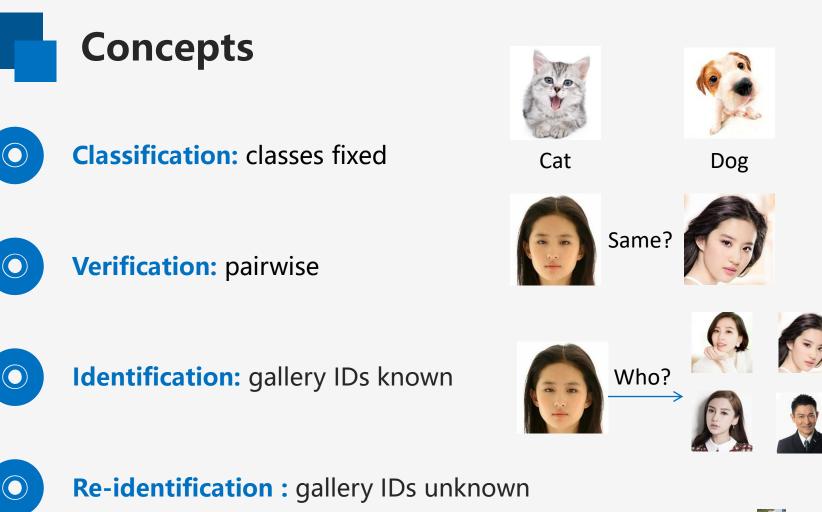
2012 "8.10" serial killer Zhou Kehua

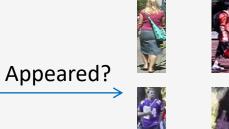
2013 Boston Marathon bombings

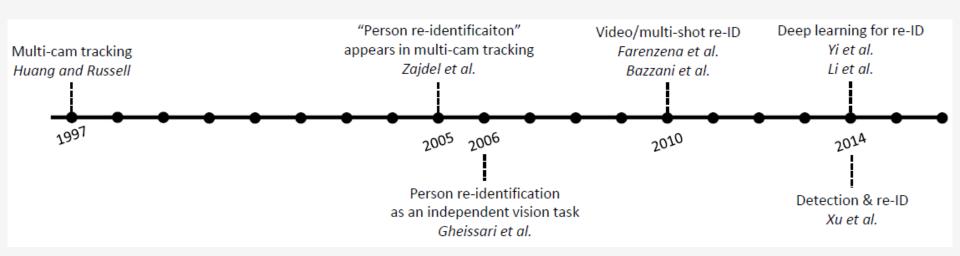
2014 "3.1" Kunming terror attack

- Surveillance cameras everywhere
- However,
 - Mostly, searching suspects still requires large amount of labors
 - Automatic algorithms are still poor
 - But the real demand is increasing

Search suspects in a large amount of videos







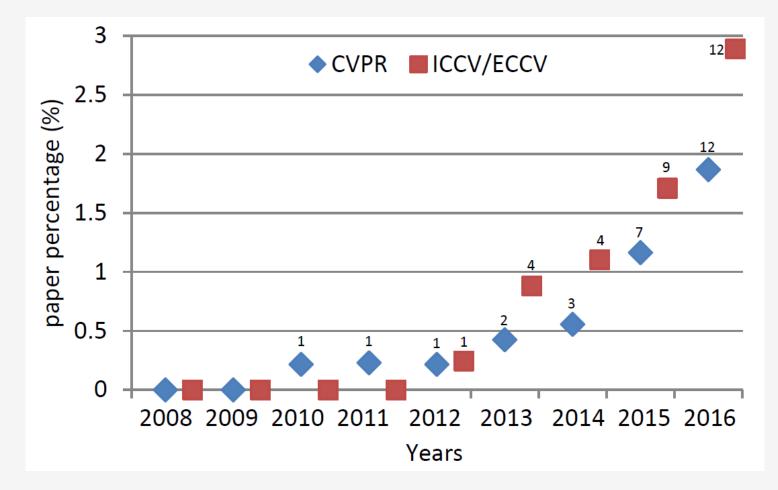
Difference with Multi-camera Tracking

- Multi-camera tracking
 - Usually online

- Need to track all persons in all cameras
- In a local area
- In a short duration
- Person Re-identification
 - Usually offline, for retrieval
 - Re-identify one specific person
 - Across broad areas
 - With a possible long time

Oriented from multi-camera tracking, but is a particular independent task now.

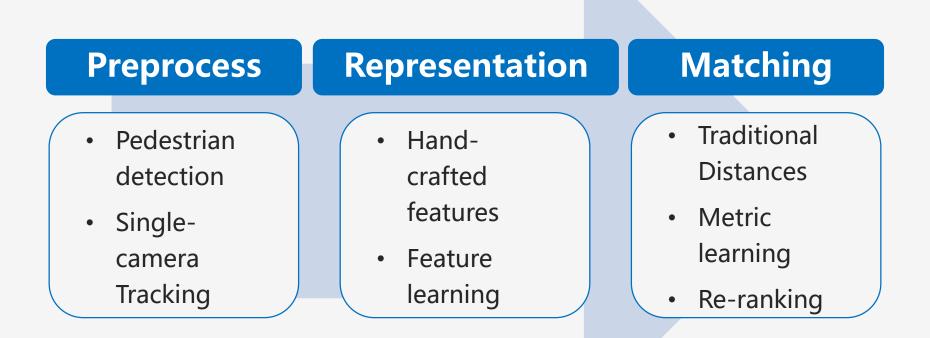
One vs. multi



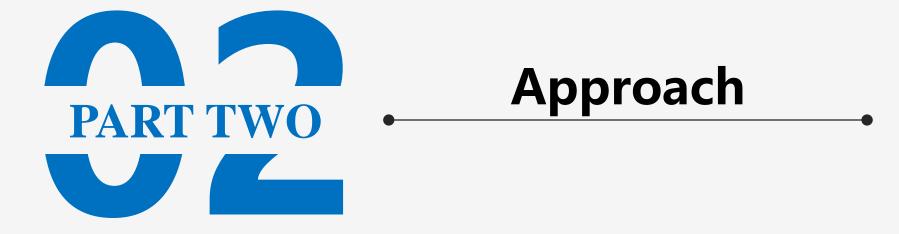
CVPR 2018: 27 ECCV 2018: 12

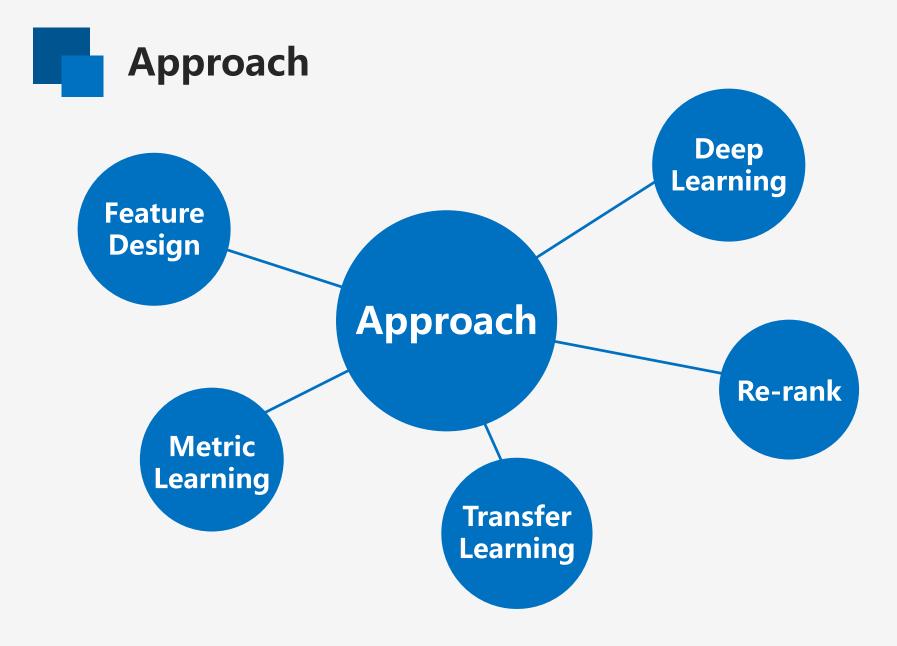
From Zheng et al. 2016.

Pipeline

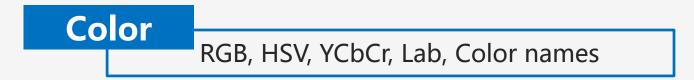


- Viewpoint changes
- Pose changes
- Illumination variations
- Occlusions
- Low resolutions
- Limited labeled data
- Generalization ability



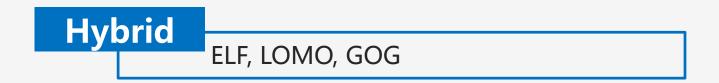


Main research directions in person re-identification

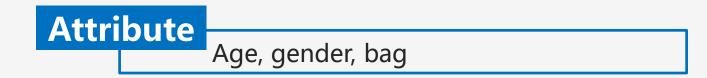


 Texture

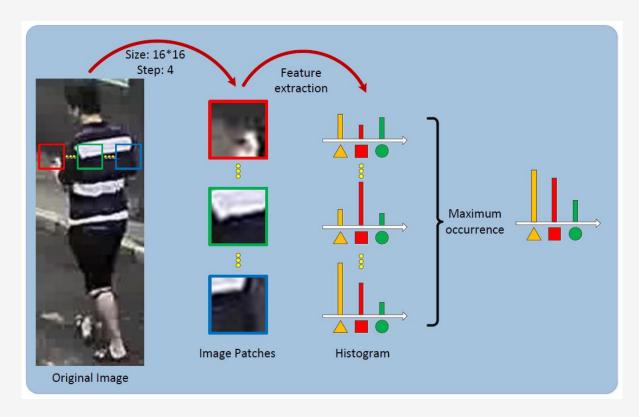
 Gabor, LBP, SILTP, Schmid, BiCov



Structure Pictorial, SDALF, Saliency



- Typical feature: LOMO
 - Illumination variations: retinex and SILTP
 - Viewpoint changes: local maximal occurence



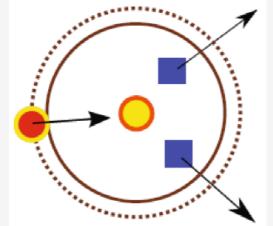
S. Liao et al., "Person Re-identification by Local Maximal Occurrence Representation and Metric Learning," In CVPR 2015.

Traditional Methods

ITML, LMNN, LDML

Optimization Methods

PRDC, MLAPG

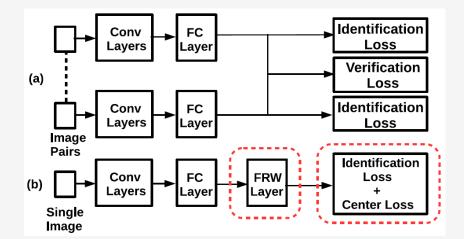


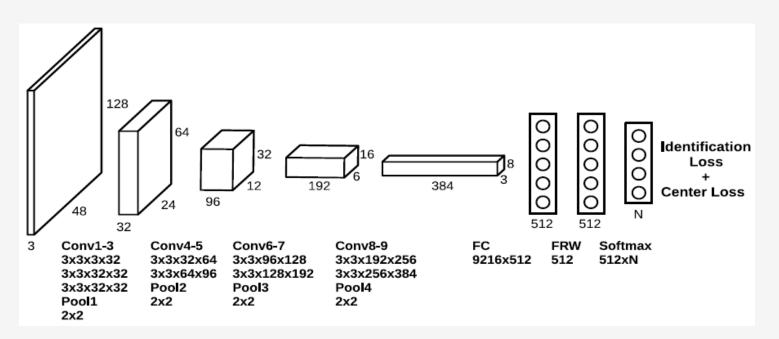
Fast Methods

KISSME, XQDA, LSSL

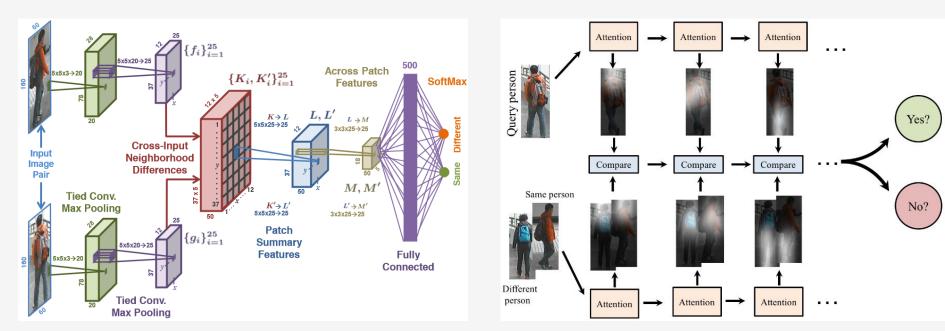
 $D^2_{\mathbf{M}}(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\|^2_{\mathbf{M}} = (\mathbf{x} - \mathbf{z})^T \mathbf{M}(\mathbf{x} - \mathbf{z})$

- Deep metric learning
 - Cosine similarity
 - Contrastive loss
 - Triplet loss
 - Center loss

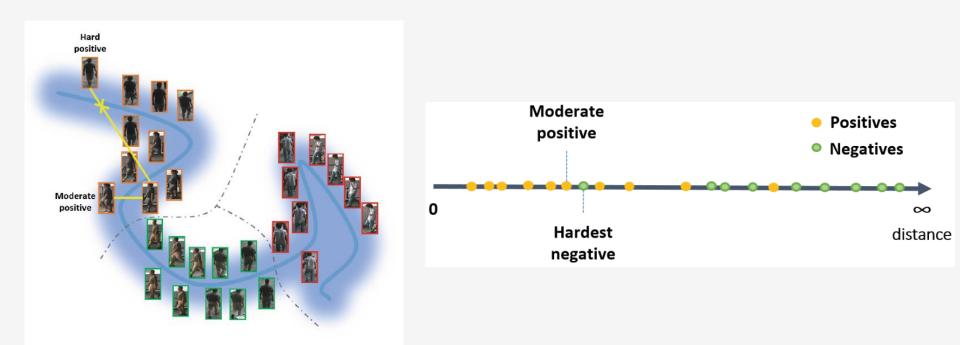




- Deep structures
 - Siamese CNN
 - Cross-input neighborhood, patch summary
 - Gating CNN
 - Contextual LSTM
 - Attention network

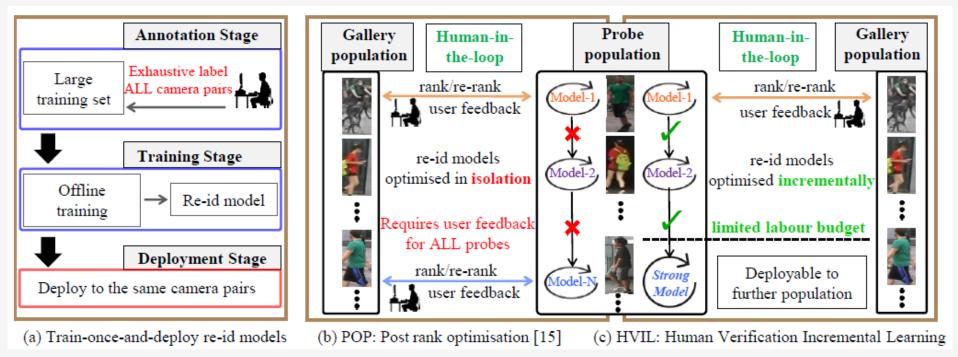


- Sample mining
 - Hard negative mining
 - Moderate positive sample mining

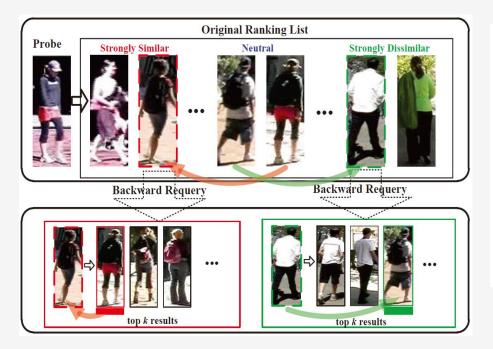


H. Shi et al., "Embedding Deep Metric for Person Re-identi cation: A Study Against Large Variations," In ECCV 2016.

- User feedback based methods (human in the loop)
 - POP
 - HVIL



- Context based methods
 - DCIA
 - Bidirectional ranking
 - DSAR



$\mathbf{Rank} \rightarrow$	1	5	10	25	50
Euc. Dist.+ DCIA	16.29	33.38	47.46	58.86	72.78
DDC [10]	19	-	52	69	80
KISSME+SB [2]	19.3	50.7	63.3	78.2	90.6
KISSME+CCRR [17]	22	49	69	87	95
RIRO [37] (1 Iteration)	28	30	34	51	64
PRRS [4]	33.29	-	78.35	-	97.53
KISSME+ DCIA	38.87	67.96	82.01	93.62	98.36
IRT [1] (1 Iteration)	43	45	46	53	61
LADF+ DCIA	44.67	71.54	83.56	93.82	98.52
POP [23] (1 Iteration)	59.05	60.95	63.10	72.20	-
KCCA+ DCIA	63.92	78.48	87.50	96.36	99.05

DCIA on VIPeR

Garcia et al., "Person Re-Identification Ranking Optimization by Discriminant Context Information Analysis," In ICCV 2015.

- Cross-dataset evaluation
 - Dong Yi et al. 2014, deep metric learning: crossdataset evaluation
 - Yang Hu et al. 2014, "Cross dataset person reidentification "
- Transfer learning / domain adaptation
 - Supervised
 - Pre-train + fine tuning
 - Unsupervised
 - UMDL, CVPR 2016
 - CAMEL, ICCV 2017
 - SPGAN, CVPR 2018
 - HHL, ECCV 2018

Evaluation and Benchmark

- Closed-set scenario
 - Probe:
 - query images to be re-identified
 - Gallery:
 - a set of images from surveillance videos to re-identify probe images
 - Performance measure:
 - Cumulative Matching Characteristic (CMC) curves
 - mAP: mean average precision

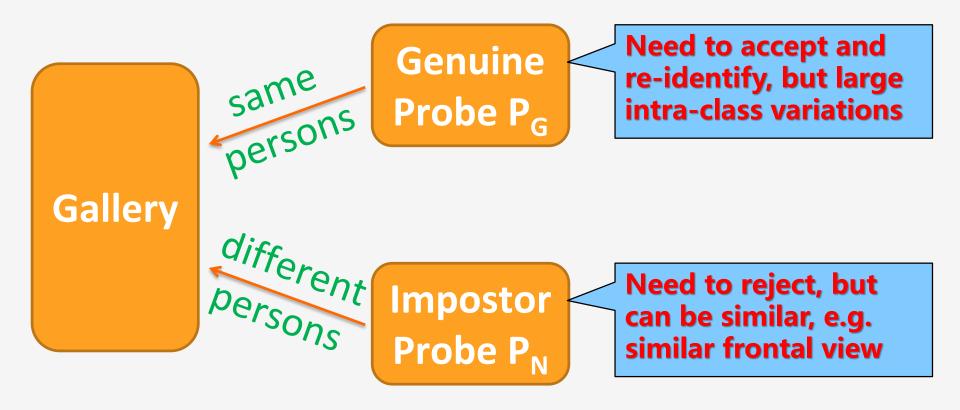
mAP is from image retrieval. CMC is more practical for person re-id, because one correct retrieval is already enough for forensic search.

Constraint: each probe image must have the same person appearing in the gallery

• Open-set scenario

Open-set Person Re-identification

- Task: determine the same person of the probe in the gallery, or reject the probe
- Two subsets of probes



Open-set Person Re-identification

- Performance measures:
 - Detection and Identification Rate (DIR): percentage of images in P_G that are correctly accepted and re-identified
 - False Accept Rate (FAR): percentage of images in P_{N} that are falsely accepted

Closed-set Benchmark Datasets

Dataset	#Cameras	#Persons	#Images	#Views
VIPeR	2	632	1,264	2
ETHZ	1	146	8,555	1
i-LIDS	5	119	476	2
QMUL GRID	8	250	1,275	2
PRID2011	2	200	1,134	2
CUHK01	2	971	3,884	2
CUHK02	5 pairs	1,816	7,264	2
CUHK03	6	1,360	13,164	2
CAMPUS-Human	3	74	1,889	3
Market-1501	6	1,501	32,668	-
MARS	6	1,261	1,191,003	-
DUKE	8	1,404	36,411	-

Open-set Benchmark Datasets

Dataset	#Cameras	#Persons	#Images	#Views
Open-world	6	28	4,096	-
OPeRID	6	200	7,413	5

Benchmark on DukeMTMC-reID

Methods	Rank@1	mAP
BoW+kissme	25.13%	12.17%
LOMO+XQDA	30.75%	17.04%
PSE	79.8%	62.0%
ATWL(2-stream)	79.80%	63.40%
Mid-level Representation	80.43%	63.88%
HA-CNN	80.5%	63.8%
Deep-Person	80.90%	64.80%
MLFN	81.2%	62.8%
DuATM (Dense-121)	81.82%	64.58%
РСВ	83.3%	69.2%
Part-aligned (Inception V1, OpenPose)	84.4%	69.3%
GP-relD	85.2%	72.8%
SPreID (Res-152)	85.95%	73.34%

On OPeRID

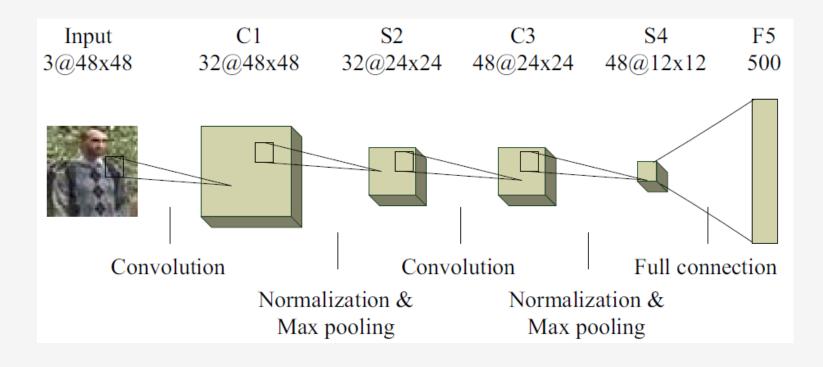
,	FAR=1%		FAR=10%	
	Rank=1	Rank=10	Rank=1	Rank=10
IDENTITY	0.84	0.91	7.36	9.21
MAHAL [13]	1.89	1.99	10.50	11.97
KISSME [13]	1.82	1.92	9.99	11.46
LMNN [29]	0.41	0.41	3.97	4.58
ITML [6]	1.18	1.21	8.39	9.27
LADF [19]	1.53	1.74	9.11	10.82
RRDA	3.99	4.35	14.51	16.72

Very poor!

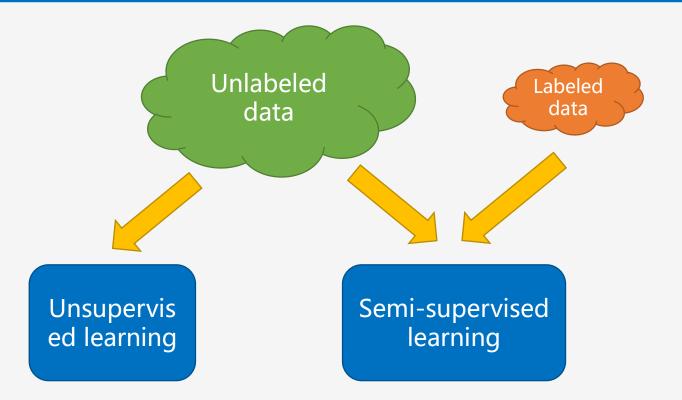
S. Liao et al., "Open-set Person Re-identification," In arXiv 2014.



With the help of large datasets, deep learning methods have achieved much better performance, and are becoming more and more important for person re-identification.

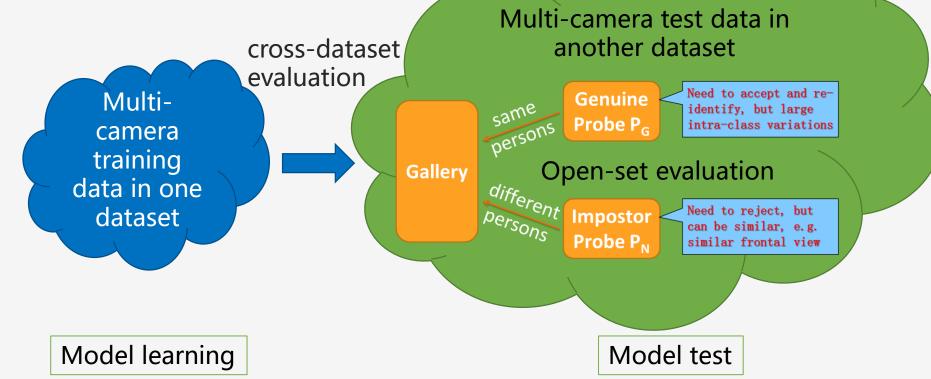


2 Due to limited labeled data and large diversity in practical scenarios, semi-supervised learning or unsupervised learning will be potentially useful for practical applications in exploring large amount of unlabeled data.



Performance of cross-dataset evaluation is still poor.
 Unsupervised transfer learning and Re-ranking methods may be very useful in improving the performance.

For evaluation, open-set person re-identification and cross-dataset evaluation will be preferred in evaluating practical performance.



Shengcai Liao

Institute of Automation Chinese Academy of Sciences

http://www.cbsr.ia.ac.cn/users/scliao/

